Real-World Applications of Bayesian Belief Networks

Bayesian networks are basically a subbranch of probability graphs. It basically is a graphical model on the basis of which one can represent variables or a set of variables and their dependencies on different conditions. For the representations, the Bayesian network used acyclic graphs. An Acyclic graph is a representation of a graph, in this kind of graph, there is no graphical cycle. There are two main types of acyclic graphs one is connected known as a tree and the other is disconnected which is known as a forest or collection of trees. There is another definition of a Bayesian graph presented in the article, the author explained that it is a kind of graphical model which represent the knowledge about something which is uncertain, every ode has some random value, and conditional probability can be observed on each edge of the graph. These conditional probability-based edges represent every knowledge of the random variable of the nodes.

Working of Bayesian Belief Network

Bayesian networks’ working is simple in nature. There are no complex variables or algorithms involved in the working of Bayesian belief networking unlike other machine learning or artificial intelligence models. These are simple graphical models having different edges and nodes. They have random variables available for working in the model, both dependent and independent relationships can be found between the variable using this technique. They can make models able to learn from the given data, they can become so strong after training and learning from the data that they can estimate the possibilities of some events. There are two main important parts to Bayesian belief networks, one is nodes which are basically the random variable in the tree or the data and the other one is the edge which represents the relationship between these nodes.

probabilistic-graphical-model-of-bayesian-network

A Probabilistic Graphical Model of Bayesian Network

Applications of Bayesian Belief Network

Bayesian belief networks, nowadays are used in almost every field of machine learning, and artificial intelligence due to their less complex durability, and better approximation. This model is mostly used in those areas when a model is uncertain about the values of some event that has occurred at a specific area or a specific time. This helps the model to work in a competitive environment where the decision-making is on its own. From a technical point of view, there are different applications of Bayesian belief networks, some of the artificial intelligence, and machine learning fields that may have used these techniques are as; Image processing, CNN, GRN, Semantic Searches, Information Retrieval, and Medicine . A brief introduction of these fields in our daily lives is discussed as follows.

Learn how Algoscale can help, here !